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Deep Learning at Scale
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Cyber Defense Center 

Globally distributed Team

Mission

• Monitoring of Siemens 

infrastructure worldwide

• Identify and analyze 

security threats

Cyber

Defense 

Center

Focus Area
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Cyber Defense Center 

Analyze, Verify, HuntStore, Enrich, Alert
Log Collection
(Endpoints, Servers, Proxies, AD, Packet 
Captures, Sandboxes, Email Servers…)

Threat Detection System

Dashboards

Search Tools

Storage

Hybrid Cloud Solution
(50,000+ Events/Sec)

Security AnalystsSiemens Corporate Network
(500,000+ Hosts, 350,000+ Users)

Mission: Threat Detection
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Cyber Defense Center
Main Detection Components

Machine Learning, Artificial 

Intelligence and Deep Learning:

Non-exact Matching, 

Aggregate/Preselect/Visualize etc.

Static Analysis

Exact Matching: 

Rulesets, Regexes, 

Periodic Search 

Queries, Scripts etc.

Dynamic and Hybrid 

Analysis

Key motivation for us: 

• More robust detection: Learn general 

malware characteristics

• Enable novel detection vectors: E.g., 

image recognition for phishing detection

• Automate repetitive tasks
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AI and Deep Learning on the Rise
High expectations due to success stories

Cancer DetectionSelf-driving Cars Translation
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AI and Deep Learning on the Rise
How about Security?

Dedicated Workshops Large amount of new Papers Numerous (Open Source) 

Tools and Implementations
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AI and Deep Learning on the Rise
Key Challenges (in Large Environments):

→ Huge gap between research and practice

Accuracy (TPs, FPs etc)

Not enough (labeled) Data

Amount of data

P
er

fo
rm

an
ce

Shallow

Learners

Technical ChallengesNo Standard Architectures

Environ-

ment A

Environ-

ment B

Limited Generalizability Limited Scalability



Use Case: DGA Detection
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What is a DGA doing?

Malware: attempt to communicate with Attackers’ server 1

Infected Host www.IamEvil.com
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Defenses Up: blacklist stops the communication2

Infected Host www.IamEvil.com

Blacklist

What is a DGA doing?
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What is a DGA doing?

DGA in action3

Infected Host
www.IamEvil-0001.com
www.IamEvil-0002.com
www.IamEvil-0003.com
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What is a DGA doing?

DGA into action4

Infected host
www.IamEvil-0001.com
www.IamEvil-0002.com
www.IamEvil-0003.com

Simply blocking domains does not scale anymore
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A Simple DGA Example

[CryptoLocker DGA]
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Quiz: Can you distinguish Legitimate 

Domains from Malicious ones?

hzmksreiuojy.in

b9qmjjys3z.com

oqjiwef12egre6erg6qwefg312qrgqretg132.com lkckclckl1i1i.com

xjpakmdcfuqe.nl

reqblcsh.net

cilavocofer.eu

edkowalczyk.com

skhhtcss.edu.hk

blkdmnds.com

watdoejijbijbrand.nl

kdnlrklb.com

abcdefgtfddf2223.com

llanfairpwllgwyngyllgogerychwyrndrobwll-llantysiliogogogoch.com
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Quiz: Can you distinguish Legitimate 

Domains from Malicious ones?

hzmksreiuojy.in

b9qmjjys3z.com

oqjiwef12egre6erg6qwefg312qrgqretg132.com lkckclckl1i1i.com

xjpakmdcfuqe.nl

reqblcsh.net

cilavocofer.eu

edkowalczyk.com

skhhtcss.edu.hk

blkdmnds.com

watdoejijbijbrand.nl

kdnlrklb.com

abcdefgtfddf2223.com

llanfairpwllgwyngyllgogerychwyrndrobwll-llantysiliogogogoch.com

= malicious



Name of a town in Wales
[https://www.youtube.com/watch?v=fHxO0UdpoxM]



Detecting DGAs with

Deep Learners
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Detecting DGAs with AI

1. Characters are 

converted to ASCII tokens

2. Tokens are embedded 

into multi-dimensional 

vectors

3. Forward layers or 

Recurrent layers can be 

utilized to generate features

4. Fully connected layers 

can be used to increase 

the model depth

5. A suspiciousness score is 

assigned based on the 

output of sigmoid output 

neuron or softmax layer
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Example CNN Layer with UMAP

© Marionete Limited 2018
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Results

Shallow Learner Approach ( Deep Learning Approach

Accuracy (%) TPR (%) FPR (%) TNR (%) FNR (%)

98.64 98.08 0.77 99.23 1.02

Accuracy (%) TPR (%) FPR (%) TNR (%) FNR (%)

84.36 96.78 31.56 68.43 3.21



Design Platform and 

Operationalize 
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Operational Challenge

500,000+ Hosts

50,000+ Events per second

6+ TBs of data per day

24/7 Operations

Highly Volatile Loads (20x)
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Operationalize Smart!

500,000+ Hosts

50,000+ Events per second

6+ TBs of data per day

24/7 Operations

Highly Volatile Loads (20x)

Auto Scaling (Elasticity)

Auto Failover

Server Patching

Backups

Don't burden your team with 

Go Serverless
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Important Pipelines

Endpoint

Network

Ingest Pipeline: Store AD- Proxy- Email-Logs into the S31

S3

Landing Zone

Kinesis

Streaming

Log 
Sources

Ingest and Inference
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Important Pipelines

Glue

Incremental ETL

Endpoint

Network

ETL: Cleaning and Transforming Data2

S3

Landing Zone

S3

Data Lake

Kinesis

Streaming

Log 
Sources

Ingest and Inference
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Important Pipelines

Glue

Incremental ETL

Endpoint

Network

Presentation: Create Statistics, Provide Data to Analysts3

S3

Landing Zone

S3

Data Lake

Athena

Analyze 

Incidents and 

Query 

History

Kinesis

Streaming

IOCs

Incident 

Analysis

Log 
Sources

Ingest and Inference
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Important Pipelines

Glue

Incremental ETL

Endpoint

Network

Detection: Real Time Prediction of Threats 4

S3

Landing Zone

S3

Data Lake

Athena

Analyze 

Incidents and 

Query 

History

SageMaker AI

Predict Incidents

Kinesis

Streaming

IOCs

Incident 

Analysis

Data

Scientists

Log 
Sources

Ingest and Inference
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Important Pipelines

Glue

Incremental ETL

Endpoint

Network

Log 
Sources

Detection: Real Time Prediction of Threats 4

S3

Landing Zone

S3

Data Lake

Athena

Analyze 

Incidents and 

Query 

History

SageMaker AI

Predict Incidents

Kinesis

Streaming

IOCs

Incident 

Analysis

Data

Scientists

Ingest and Inference
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Important Pipelines

model.py config.

yaml

Gate: requires 

human approval

Build a Model
Validate Model

A/B Testing etc.

Deliver Model 

to Endpoint
Deploy Model 

to Pipeline

Data

Scientist

AI Model Generation and Deployment
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Important Pipelines

model.py config.

yaml

Gate: requires 

human approval

Build a Model
Validate Model

A/B Testing etc.

Deliver Model 

to Endpoint
Deploy Model 

to Pipeline

Continuously

measure

Model quality

Security 

Analysts

Constantly

improve Models 

with TPs/FPs from

Security Analysts

Data

Scientist

AI Feedback Loop



Thank You


